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Abstract&A more general melting and solidification model is proposed to account for an interesting 
phenomenon, namely, the existence of a two-phase zone in which partial phase change can occur. The two- 
phase zone is attributed to internal melting or solidification (as opposed to surface melting or solidification) 
induced by internal thermal radiation. The model proposes three physical layers : the liquid and solid layers as 
in the classical model, and a two-phase mixture (part liquid and part solid) layer in between. It is shown that in 
the limiting case of opaque media, the thickness of the two-phase layer diminishes and the proposed model 
reduces to the classical one. A corresponding mathematical formulation is presented for phase change 
problems with internal radiative transfer, which is used to clarify someinconsistencies in theexistingliterature. 
Finally, an exact and two approximate solutions to three simple solidification problems are also presented to 

illustrate the effect of the two-phase zone on solidification of semi-transparent materials. 
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NOMENCLATURE 

surface area, or coefficient in temperature 
polynomial ; 
coefficient in temperature polynomial ; 
specific heat ; 
specific internal energy; 
Planck function ; 
exponential integral function of nth kind; 
emission from a semi-transparent medium ; 
radiosity ; 
gray absorption coefficient ; 
conductivity; 
spectral absorption coefficient; 
mass flux, or index of refraction; 
unit vector; 
total heat flux; 
radiative flux; 
mass solidification rate per unit volume of 
the mixture; 
location of an interface or propagation 
front of a given void fraction ; 
first interface; 

second interface; 
time ; 
temperature ; 
mean temperature, [( Tz + Ti)/2] ‘I4 ; 
velocity ; 
volume ; 
physical coordinate normal to wall. 

Greek symbols 

4 solid volume fraction ; 
xc* thermal diffusivity ; 

62 

a quantity, 2 K,n20T~lp*C; 

spectral transmittance from region j to 
other side through an interface; 
dimensionless temperature, T/T, ; 
latent heat of fusion per unit mass ; 
pressure tensor ; 
superficial mass density; 
true mass density; 

spectral reflectance back to region j by an 
interface ; 
Stefan-Boltzmann constant ; 
optical thickness, K,x ; 
optical thickness, K,S, ; 
stress tensor. 

Subscripts 

1, 
2, 
b, 

1, 

1, 
m, 
0, 

S, 

W, 

V, 

co, 
eq, 

region 1 ; 
region 2; 

characteristic thickness similar to boundary 
layer thickness ; 
interface; 
liquid ; 
melting point ; 
first time liquid drops to melting 
temperature; 
solid ; 
wall ; 
frequency ; 
far away from wall; 
equivalent. 

Superscripts 
+ positive x direction ; 

negative x direction. 



622 S. H. (‘HA\. II. H. CHO and G. KI)(.AM~:sTA~,zo(~~~LLAK~ 

I. IUTRODUCTIOh ARD CONCEPT differences in numerical results as with the fundamental 
OF IiXTERNAL PHASE CHAKGE; question of what the proper condition should be. 

MELTING and solidification of materials by heat 
transfer is of importaricc in many technical fields and 
has been a subject of interest for obcr a century. In the 

past ten years, considerable attention has been turned 
from opaque to non-opaque materials, in which the 
internal thermal radiation can no longer be ignored. 

Typical examples of applications range from low 
temperature problems. such as ice melting by solar 
energy, to high temperature problems. such as crystal 
growth, the solidification of slag in advanced MHD 
coal-fired power plants. and the melting or solidiii- 
cation of uranium fuels (a consideration in nucleai 
reactor safety). 

Recent studies to ascertain the el‘rects of internal 
thermal radiation in non-opaque materials during 
phase change are numerous [I IO] but exhibit 
considerable differences in their formulations. Table 1 
compares and summarires those formulations for a 
simple, classical Stefan problem whcrc the surface of a 
semi-infinite. semi-transparent liquid. initially at the 
melting tempcraturc Tm. is sudden11 lowered to a 
constant temperature 76. 

All of the existing formulations are based on the 
premise that there are two distinct phases, one being 
pure liquid and the other pure solid. separated by an 
interface located at X = S,. Consequently. they ha+e 
either missed or overlooked an interesting pheno- 
menon. namely, the possible existence of a two-phase 
zone between the pure liquid and the pure solid zones 
when the internal radiation becomes important. ‘r‘o 
illustrate the concept of ‘Internal phase change’. 

consider the melting of a semi-transparent, scmi- 
infinite solid at its melting point before exposing to an 
external thermal radiation heat source. The existing 
model [I 101. which is the yamc A the classicai, 
conduction-controlled model. ;lssumcs melting from 
the top and proceeding downward layer by layer, 
resulting in a pure liquid layer on the top of the pure 
solid layer as shown in Fig. l(a). To see if this model IS 

appropriate when the internal thermal radiation is 
significant, consider a small strip within the solid layer 
21s ;I control volumeand make an energy balance Thcrc 

iiiiiii 
It is seen that while all researchers agree on the 

differentialLintegra1 equation. they disagree on the 

interracial condition. Some [I, 3. IO] suggest the 
inclusion of ;I net radiative IILIX in the classical 
expression of Stefan’s interfacial condition, while 

others [%5J suggest that two net radiative Iluxe\ bc 
included. On the other hand. a differential term of 

radiative flux is suggested in ref. [Y] while an integral 
term is suggested in ref. [Xl. F;inally, ref. [Y] simply 
employed the same condition as that of conduction- 
controlled solidification. For the same problem. except 
in the limiting casts of coilduction-domin~lted or 
extremely opaque materials. the different interfacial 
conditions would undoubtedly lead to diflerent results. 
The present study is concerned not so much with the 

FIG;. I. (a) twisting model. (b) Current model with internal 

melting (internal phase change). 

Table I. Comparisons of existing formulations for the solidiiication of a semi-infinite liquid initially at melting temperature 

Ref. Differential equation Interface condition 
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are no net energy exchanges in the volume by 
conduction or convection (density being taken as 
constant to simplify the discussion here). However, the 
solid in the small control volume, through its action-at- 
a-distance characteristics, does absorb part of the 
thermal radiant energy of the external source. This net 
gain of radiative energy obviously cannot raise the 
sensible heat without first melting the solid in the 
control volume. (Similar to all the studies on this 
subject [l-lo], we consider, without loss of generality, 
only the pure material with a unique melting 
temperature and assume no thermal stress or non- 
equilibrium effects like superheating or supercooling, 
etc.) Since the amount of energy absorbed is not 
necessarily exactly equal to the latent heat ofmelting of 
the solid in the entire control volume, only partial 
melting can be expected. Moreover, as the control 
volume located at the deeper location absorbs less 
radiative energy, a smaller portion of the solid within 
the volume is melted. Thus the percentage of solid 
melted should diminish downward, resulting in a two- 
phase zone located between the newly formed pure 
liquid layer on the top and the original solid layer at the 
bottom as shown in Fig. l(b). 

Similar conclusions can be reached about the 
possible existence of a two-phase layer (i.e. an internal 
solidification) in the solidi~cation of a high temperature 
semi-transparent medium because of the rapid internal 
radiative cooling. 

The existence of a two-phase zone has long been 
mentioned in the meteorological literature. Dorsey 
[ 111 explicitly stated that 

“When a block of ice that is above water is exposed to 
light, small cavities partly filled with water may be seen 
to form throughout the body of the ice, provided that 
the temperature of the ice is not too low. , . Never- 
theless, internal melting occurs, and proves that the 
interior portions of a mass of ice may be melted by 
radiant heat which has traversed other portions of the 
mass without melting them. The consequence is that 
such a mass, raised to the temperature of 32”F, will have 
some of its parts liquid and some solid.” 

Knight [12] also stated that “when an ice crystal is 
warmed through its volume, especially if by radiation, 
internal melting occurs.” Other references? mentioned 
the term “internal melting” [7,9, 13, 141, though with 
some ambiguity. 

From the above, two conclusions can be drawn. 
First, the internal phase change phenomenon is real 
and known in the meteorological literature, but 

t Upon the completion of the paper, it was brought to the 
authors’ attention that a recent work (L. A. Diaz and R. 
Viskanta, Melting of a slab of semitransparent material by 
irradiation from an external radiation source AIAA-81-1047, 
AIAA 16th Thermophysics Conference, June 1981, Palo Alto, 
CA) observed no internal melting within n-octadecane. 
Unfortunately, the solid n-octadecane is opaque (as was so 
assumed in their paper) so that little internal melting could be 
expected. 

somehow has not been addressed in the heat transfer 
analysis of semi-transparent materials. Secondly, while 
thedetailedmicroscopicmechanismofinternal melting 
is complex and not well understood (and which is 
beyond the scope ofthe present study), the macroscopic 
end results are obvious, namely, radiant heat sources 
produce internal melting. 

Other than the above observations, an analytical 
work in nuclear reactor safety also indicates a two- 
phase layer in the melting of reactor fuels ofconduction 
with an internal heat generation [Zl]. This further 
confirms the need to incorporate the two-phase layer in 
the phase change analysis of semi-transparent 
materials, since the internal radiation is equivalent to 
an internal heat source or sink. 

2. MATHEMATICAL FORMULATION 

2.1. Model 
Amoregeneral phase change model is proposed here 

which comprises three physical layers [Fig. l(b)], 
namely a pure solid layer, a pure liquid layer and a two- 
phase mixture layer in between. The model proposed is 
chosen to contrast with the conventional conduction- 
controlled “two-layer” model, shown in Fig. l(a). As 
will be seen later, under the extreme conditions in which 
the internal radiative transfer is absent or insignificant 
(such as with opaque metals or transparent materials), 
the thickness of the two-phase layer diminishes to zero 
and the proposed “three-layer” model reduces to the 
conventional “two-layer” model. In this sense, the 
conventional model can be regarded as a limiting case 
of the present model, which is applicable to semi- 
transparent materials as well. 

The following mathematical formulation is based on 
the model proposed for the solidification of a semi- 
infinite liquid initially at a temperature T,, higher than 
the melting temperature T,, as shown in Fig. 2. The 
medium considered is assumed to be semi-transparent, 
homogeneous and isotropic with constant and 
identical thermophysical and optical properties in both 
phases. A unique melting temperature is assumed to 
exist and the two-phase region is assumed to be in 
thermal equilibrium at the melting temperature. Since 

PUIT 
solid 

(1) 

Two 

phase 

(2) 

Pure 

liquid 

(3) 

-x 
) 

s,(t) 

t_--- s,(+--~ 

FIG. 2. Solidification of a semi-infinite liquid with an initial 
temperature higher than the melting temperature. 
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the complex refractive indices of both phases are 2.3. Pure liquid and solid regions 
assumed to be the same, the albedo of scattering is In the pure liquid region. the forlnulat~on is 
negligible. Finally the change in density during straightforward and can be summarized as 
solidification is assumed to be small, such that ~ , 
convective motion can be ignored. 

i?7. c’y 
&i‘: = K,, ;+ - ~-I 

i.Y . 
0 < I. s1 d .r (8) 

2.2. Two-phusr region with 

In order to account for the release of latent heat of ‘[‘zz 7 ? at i = 0. @i 
solidification by internal solidification. an additional 
source term, i.r, should be included in the energy 

‘Fz 7, at .Y = S,z(r ). c IiN 

equation 7‘= T, at \’ -7 / (11) 

pC-D~-v.K,VT+v.q,=Ir. (1) 

The compressibility and the viscous dissipation terms 
have been neglected. The transient and conductive 

terms in equation (1) may be important for eutectic 
solutions with variable freezing points. With no 
convection and a constant freezing temperature, 
equation (I) simplifies to 

where Sa is the moving front of the second interface 

between the two-phase and pure liquid regions. 
Similarly, for the pure solid phase, the governing 

equation is 

subject to 

The above is coupled to the continuity equation as the 
solidificationrateis related to the solid volume fraction. 

Following our recent study [IS] on thecondensation of 
where S,(t) is the first interface between the pure solid 

a high temperature gas-vapour mixture, the species 

and the two_phase region, 

equation of the solidified phase 

ip, 
-- = - v ’ CP Al + ) 

it 

can be written as 

(3 

in which a is the solidified volume fraction and the 

superficial solid density, ps, is related to the true density 
it: by ps = z&. In the absence of motion (u, = 0) 
equation (4) reduces to the simple form 

2.4. lnte+zciul condition at x = S, 
The above equations and conditions are incomplete 

without further formulating the interfacial conditions 
at Y = S, and Sz. Special attention is needed for x = S, 
as it involves a discontinuit~~ concept due to internal 
solidification by radiation. As shown in the Appendix, 

the condition at s = S, is 

l?x r 
(5) 

The above interface condition is quite general as it 

(9 p,* allows for the convective motion of the medium should 

Recalling that the temperature profile in the two-phase 
the density change during solidification. In the present 

region is Rat at rm. the solid volume fraction 
problem, no change in density is assumed. Therefore 

distribution can then be determined by solving 
p: = pg, = p& = in* and us, = us> = u, = 0. Further- 

equations (2) and (5). These can be combined as 
more, under the assumption of a single melting 
temperature, (;T;?x = 0 at Y =: S; the interfacial 

subject to the initial condition 

condition at x = S, reduces to 

x=0 at t=t,, (7) subject to the initial condition 

where lo stands for the time the liquid temperature 
located at x = 0 drops to its melting point. Noting that 

s, =o at I :I,. (17b) 

a&ax is an integral equation to be supplied from the Note that the above condition contains a term 

transfer equation, no other boundary condition needs involving r(S:) which is missing in refs. [lGiO]. it 

to be specified. should be emphasized that the solid volume fraction on 
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the two-phase side adjacent to the interface, ct(S:), is 
not necessarily unity nor zero; it is a time-de~ndent 
unknown to be determined by the solution of the 
differential equation for the two-phase region [namely, 
equation (6) subject to equation (7)]. 

It appears that the differences in the existing 
interfacial conditions arise from the inconsistent 
treatment of the radiative ffux terms across the 
interface, namely q,(S:) and q,fS;) in equation (17a). 
For example, it has been stated [3,4] that if the phases 
on both sides of the interface have identical opaque 
and transparent bands then q&S;) = q&S:). In ref. 
[7], a term such as [3qr(S-)/8x] ds is proposed. 
Mathematically, this term represents the first order 
approximation of [q~(S~)-q~(S~)] if the Taylor series 
expansion is employed. In a later study [9], however, 
the same authors decided to drop this term. It can be 
shown that for semi-transparent media on both sides of 
S,, the difference between q,(S;) and q,(S:) is of the 
order of i&AS where AS is the distance between S: and 
S;, so that [q*(~~)-q~(~~)] -+ 0 as AS -+ 0. Therefore, 
the interfacial condition for semi-transparent media 
can be further simplified to 

The inclusion of this continuity (or cancellation) of the 
radiative fluxes across an interface should be of no 
surprise since it was used implicitly in an early paper 

c221. 

2.5. Limiting cases and clar~~cation of existing interface 
conditions 

In the extreme limit involving an opaque medium 
(opaque in the sense of having an infinitely large 
absorption coefficient rather than a large physical 
dimension), we have K, + 00 and dS -+ 0, yielding an 
indeterminate case. However, it can be resolved if one 
recalls that 

4nza aT4 
-- 

” = - 3K, ax 

and 

84, 4n% a=T4 _ --- 
ax- 3K, 3x2 

for an opaque gray medium. As I(, --t ~3, q, -+ 0 and 
[aq,/ax] --+ 0. Using these values in equations(6) and(7) 
yields the obvious solution that tl = 0 in the two-phase 
zone. This means that the two-phase zone diminishes 
completely and we only have two regions left, the pure 
liquid and the pure solid layers. Therefore, if the 
original liquid phase is extremely opaque, and the 
newly solidified phase is, somehow, semi-transparent, 
the interfacial condition given by equation (17a) for the 
solidification of a saturated liquid is 

where the subscript 1 has been dropped, since only one 
interface remains. If the liquid is superheated initially, 
then a conduction term on the liquid side should be 
added 

Similarly, if the original phase is semi-transparent but 
the solidified phase is extremely opaque, the two-phase 
region diminishes also. This can be easily explained on 
simple physical grounds. If the solidified phase is 
extremely opaque, only the solid interface can exchange 
radiation with the liquid. Since the interface 
temperature is no lower than the melting point (and 
neither is the liquid temperature) no internal 
solidification occurs. Mathematically, qr = 0 and 
dqdax = 0 everywhere within the liquid region if the 
liquid is initially at melting temperature. Thus, by 
equations (6) and (7), c1 = 0, implying the absence of 
two-phase zone. If the liquid is superheated initially, 
dq#x < Ofor a monoto~cally increasing temperature 
profile and equations (6) and (7) would yield a < 0, a 
physically impossible situation, which further confirms 
the absence of a two-phase zone. Therefore, for an 
initially saturated liquid 

dS 
= p*i: -$ (19c) 

and 

for aliquid that is superheated initially. Without further 
elaboration, it is sufficient to point out that if both 
phases are opaque, the interfacial condition reduces to 

which is identical to the conventional heat conduction 
condition. 

Under the limiting cases examined above, all the qr 
terms in equations (19aH19d) or Table 1 are in fact 
numerically equal to zero and should be dropped. The 
end results are the same as if we have examined the 
limiting cases of equation (18) rather than equation 
(17a). This can be readily proved by examining the 
interface between a semi-transparent medium and an 
absolutely opaque medium. By applying Fresnel 
relationships across the interface one will find a perfect 
reflection on the semi-transparent side and no emission 
from the opaque to the semi-transparent medium, 
implying no net fluxes on either side of the interface. 
These redundant q, terms are nevertheless kept in 
equations(19a)-(19d)foreaseofcomparisonwith those 
in Table 1 since the latter, except one, contain some 
forms of 4,. 

The above discussion reveals that the existing 
formulations [l-5,9, lo] in Table 1 are applicablein the 
limiting case when the medium is opaque on one or 
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both sides of the interface with a negligible two-phase 
zone. The present formulation, however, is preferable 
when applied to the general case where the scm- 
transparent medium remains semi-transparent after 

phase change. 

Following the derivation of the condition at .Y = S,. 
the other interfacial condition at x = S, in Fig. 2 can be 

obtained analogously to equation (A I 1) as 

qj’n3+qz*n2 = 4, d,~(~,~~--J*n~ (20) 

in which the unit vector n3 points in the positive .Y 
direction while n, points in the opposite direction. 
Assuming no change in density during the phase 
change and taking into consideration the continuity of 
the radiative flux, it simplilies to 

subject to the initial condition 

SZ = 0 at I = 1,). (21 b) 

In the problem of interest, a single melting temperature 
is assumed. Thus. 

Now,for thesolidification ofaliquid initially at a higher 

temperature than the melting point, dS,/dt > 0 and 
equations (21a) and (21b) would predict a negative 
temperature gradient at .X = St if r(S? ) has other than 
zero or negative values. This is, of course, physically 

impossible, as are negative X’S. Therefore, we conclude 
that the interfacial condition at .X = S; will have to be 

7 = 0 at z = SL (‘2) 

which implies 

(‘7 
_ = 0 at \ = sz (23) 
c 9 

The concept of r = 0 at x = S, and a discontinuous 
value of r at .x = S, is in fact similar to what happens in 
the solidification of an opaque binary eutectic alloy 
[ 18-201, namely, a zero value of the solid fraction at the 
liquidus front and a finite but discontinuous value at the 

solidus front. 
Mathematically, one has to solve for the solid volume 

fraction profile, 3: = x(x,~), for the two phase region. 
Then by setting the resulting solution equal to zero at 
Y = S,(t), i.e. a[S2(1), t] = 0, the growth of the second 
interface, S, = S,(r). is determined implicitly. 

2.1. ~nterj&Qul conditiom ~2nd governing d@wxtiul 

equations,for melting problem 

For completeness, the analogous formulations for 
melting problems are briefly summarized here. 
Consider a semi-infinite solid initially at a uniform 
temperature 7, below the melting point, T,, when its 

surface temperature is raised to 7,( > 7;, > ‘f‘, ), The 
formation of three regions like those in Fig. 2 can be 
expected, except region 1 becomes a pure liquid while 
region 3 remains as the original solid. The governing 
differential equations for each region remain un- 
changed. As for the interracial conditions, ;r 
discontinuity in the solid volume fraction exists at the 
liquid-~two-phase interface. but not at the second 
interface. They can be readily obtained ax 

and 

dsz = 1 (75) 

at s = S, and S,, respectively. For opaque cases, results 
similar to equations (19at(d) can be derived and will 
not be repeated here. 

To elucidate the concept of the internal phase 
change, some highly simplified solidification problems 
are to be examined and solved using the formulation 
presented here. 

Consider a gray semi-transparent. semi-infinite 
liquid bounded by a black surface. The medium is 
assumed to have a distinct melting point and the non- 
equilibrium effects, such as subcooling etc., are 
neglected. The solid and liquid in the two-phase 

mixture are assumed to thermally equilibrate 
instantaneously. Thermophysical and radiation pro- 
perties are assumed to beconstant and identical in both 
liquid and solidified phases. Since the refractive indices 
remain unchanged during the phase change, the aibedo 
of scattering within the medium can be neglected. 

The first specific problem examined is the sot- 
idification of a pure liquid, initially at its melting point, 

T,, when its surface temperature is suddenly lowered 
to ‘ZY, < T,,. The conduction-radiation parameter 
(N = K,K,/4n2aT$) is assumed to be small enough 
that the solidification is solely controlled by thermal 
radiation. This is not as restrictive as it sounds since it 
accurately represents the solidification of high 
temperature liquids. The other extreme of N -+ % 
represents the well known conduction problem which 
has been thoroughly examined in the literature. In as 
much as the primary attention is focussed on the 
characteristics of the internal solidification, we would 
further restrict ourselves in this problem and the next to 
the solidification process up to the time when the liquid 
at s = 0+ reaches 100% solidification by radiative 
cooling. Since the temperature remains unchanged 
throughout the medium, the governing equations in the 
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two-phase region are given by equations (6) and (7) with 

89, 
ax = 2K,n%( T; - 7-$&(z) (26) 

where z and x are measured from (i.e. normal 
to) the wall. Clearly, the heat transfer to the wall is 
q, = n’o(T~ - Tz) from equation (26), and the local 
solid volume fraction can be easily solved to yield 

cI(x, t) = .&(7)t* (27) 

where the dimensionless time is defined by 

t* = 2K,n20(T;- T$)t/p*k. 

Similarly, the internal local solidification rate from 

equation (2) is 

1 84, 
‘=zax- - y CT;- T:)E,(~) (28) 

from which the total solidification rate throughout the 
medium can be found, 

r tota, = 
s 

m r dx = n’a(T~- Tz)/l (29) 
0 

as is expected. 
The local volume fraction and the local internal 

solidification rate are displayed in Fig. 3. It is seen that 
they decay exponentially with increasing distance from 
the wall and are linearly proportional to the fourth 
power of temperature, two unique characteristics that 
arise when radiative transfer is dominant. 
Furthermore, the internal solidification rate is 
independent of time because of the constant and 
uniform temperature throughout the medium, so the 
solid fraction at a given location increases linearly with 
increasing time. 

The total solidification rate can be utilized to find the 
equivalent 100% pure solid layer thickness when all the 

‘“io 

FIG. 3. Local solidification rate and solid void fraction of a 
liquid at freezing point by radiative cooling 

(t* = 2K,nZu(T& T$)t/p*A and r* = lr/2K,n2a(T~- T$). 

solidified fractions are packed together, 

S~~=$~~m~d~=~s:r~~,~,dt 

n’o(T;- T4,)t 
= 

lP* 
2 (30) 

which illustrates a linear growth in contrast to the 

conventional square root of time growth in 
conduction-controlled solidification. 

Finally, another observation can be made regarding 

the characteristic thickness of the two-phase layer. In 
accordance with equation (27), the internal solidifi- 
cation penetrates to an infinite extent because x + 0 
only when x + co. However, if a two-phase layer 

thickness is alternatively defined as one whose solid 
fraction at the outer edge of the layer is equal to 1% of 
that at the innermost edge, i.e. 

c((x,, t)/cr(O + ) t) = 0.01, (31) 

then from equation (27) we find E,(z,) = 0.01, which 

yields the characteristic optical thickness of the layer as 

Zb = 3. (32) 

Therefore, the less opaque the medium, the thicker the 
two-phase layer and vice versa. 

It is seen that the exact solution has been obtained for 

the above simple problem. In the following, two slightly 
more complicated problems are considered. Exact 
solutions appear to be unlikely; only approximate 
solutions will be attempted. 

3.2. SolidiJication of a liquid above melting point- 
Radiation-controlled solidijication 

The problem considered is identical to the above 

except that the fluid is initially at a temperature, T,, 
higher than the melting point. In the pure liquid region, 
equation (8) is simplified to 

p*cg=-$ o<t 

with the initial condition given by equation (9) and 

- 2 = 2nZaT$,(z)+2n2 
s 

Cc 
T4(r’) 

0 

x E,(Jz-~‘1) dz’-4n2gT4(T). (34) 

The nonlinear integral form ofthe radiative flux makes 
the closed form solution unlikely. However, this 

equation can be greatly simplified using the fact that 
E,(lz -z’l) behaves as a delta function. As 7’ -+ 7, 

E, + co and as IZ --z’( increases, E, diminishes rapidly. 
As a result, E, behaves like a delta function and 
equation (35) can be approximated by 

- z = 2nZoT~E2(z)+2n20T4(z) 
s 

Oc ~,(l~--~‘l) 
0 

x dr’-4n2T4(r) = 2E,(z)n*o[T:- T4(t)]. 

This approximation has been used and found to be 



628 S. H. CHAN, D. H. CHO and G. KOCAMUSTAFAOGULLARI 

satisfactory in our previous analyses [ 15,23,24]. In the 
present problem of interest. T4 >> T$, thus 

d4r ~ 2 2n2aT”(7)E,(7). 
dT 

Employing the above approximation in equation (33), 
the transient temperature profile in the pure liquid 
region can be found as 

(13 = I/[1 + 3jX,(r)t] (36) 

where 

and 

Internal solidification starts as soon as the 
temperature drops to the melting temperature, T,, By 

setting N = (I,( = T,/T’) in equation (36) yields 

E,(T,,) = (II,"- 1)/3/Jt (37) 

from which thegrowth ofthe two-phaselayer thickness, 
tSI = K,S,, can be found implicitly as a function of 

time. 
Within the delta function approximation, it is noted 

that the divergence of the radiative flux given by 
equation (35) depends only on the local temperature 
and, naturally. the temperature profile given by 
equation (36) remains valid in the liquid layer (i.e. 

z > z,) even after the appearance of the two-phase 

layer. 
Turning now to the two-phase region which emerges 

after f = t, defined by 

The temperature within the region should be 

isothermal at T = T,. The governing equations for c( 
are again given by equations (6) and (7). Similar to 
equation (27), the solution is 

2K,n%(T4,- T%) 
X(T. t) = .~-~ -_--- E2($(t - to), 

p*i- 

(39) 

Once the solid fraction and temperature distri- 
butions are known, other quantities of interest can be 
evaluated. For example, in the absence of conduction 
and convection, the radiative flux represents the total 
wall heat flux, 

I 

I 
-y,,(t) = 2n’oT: 04(~, r)E&) dT. (40) 

0 

Prior to solidification, i.e. t < t,, 0 is given by equation 
(36). Thus 

E2(r!_ &, 

[l + 3fit&(7)]“‘3 
(41) 

After solidification begins (at 1 > to) two distinct 
regions appear, 

4,,(l) 
-~~~ = 04,[0.5 - E,(T,)] 

2n%T4 

142) 

where the first term on the RHS can be attributed to the 
internal solidification region while the second refers to 
the pure liquid region. The above integrations can be 
made numerically in a straightforward manner. 

If the internal solidification is neglected, the wall flux 

given by equation (41) would be applicable not only for 
t -c t, but for t > f. as well. Then a comparison with 
equation (42) shows that the.heat flux to the wall is 
underestimated by the amount 

&r,(t) 
” __._ = 

s 2n’oTt. (, 
[@-f?(~, t)]E,(t) dr 

where U is described by equation (36). As time increases 
(t > t, of course), H4 falls rapidly below the value of 0: 
and, therefore, the error in the wall flux rises sharply. 
This can be explained on physical grounds. In the 
presence of the internal solidification, by virtue of the 
highlatent heat offusion relative tosensible heat effects, 
a temperature will be maintained at high levels (i.e. 
sustained at the melting point), which in turn is 
supportive of the radiative heat transport mechanism, 
resulting in a great enhancement of heat transfer to the 
surrounding wall. Such an effective heat transfer 
mechanism is basically similar to the fog formation 
process we discussed recently in connection with the 
condensation of a hot vapor mixture [153. 

3.3. Solirlljicution of u liquid ut melting poinf ~~ 

Combined conduction und radiution 
As a final example, consider a more difficult problem 

to include the conduction heat transfer in the first 
problem. In addition to the two-phase region, a 

solidified layer composed of 100”~j solid is induced 
instantaneously by conduction near the surface at 
x = 0. To keep the problem amenable without having 
to resort to complicated numerical methods, we 
restrict ourselves to using the optically thin approxi- 
mation for the solid layer and linearizing T4 terms in 

the radiative flux expression. 
First, consider the two-phase region (X > S,). As 

long as the solid layer is optically thin, the divergence of 
radiative flux is identical to equation (26) in the first 
problem. Since the differential equation and the initial 
condition are also identical, the solid fraction 
distribution and others obtained in problem 1 are still 
valid here except for the equivalent thickness of the 
solid layer which should now be 

s I> 

r dz 
TS, 

2n20( T$ - 7’:) 
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where S,(t) is the solid layer thickness to be determined 
next. 

In the solid layer, the governing equations are given 
by equations (12)--(15) except t, = 0 and the radiative 
term can be linearized as 

3% --= 
a7 

2nZo(T4,+T:-2T4) = 16n2a~3(I--~) 

(44) 

with 

;ii4 E f( 7,; + 7-Z). (45) 

They should be solved simultaneously with the 
interfacial condition, obtained by combining equations 
(18) and (27), 

(46) 

with 

S1 = 0 at r = 0. (47) 

The above set of equations with a moving boundary 
condition can be solved by the integral technique, the 
technique used extensively in studying the conduction 
and radiation solidification problems [l, 251. We 
assumed a second degree polynomial, 

T,-T = A(x-S,)+B(x-S,)‘, (48) 

with three unknown timedependent constants A, Band 
S, to be determined by the integral method. Though 
somewhat tedious and lengthy, the solution procedure 
is generally straightforward. Only the final results are 
given below : 

with 

A = [S-(6*+4~#‘~]/2 (49) 

6 = 2f/S*, 

f = El +C,&WWG 

C, = 2K,n20(T$- Ti)/p*L, 

q =f(2Tm-2Tw+C,S:)/Sf, 

C, = 16K,n2a;i‘3(T,- ?!‘),I&, 

z s1 = KS, 

and 

B = (T,- T,+AS,)/Sf. (50) 

The solid layer thickness is to be determined by solving 

f5rt 

with the initial condition equation (47). In the above 
equation, 

g= l-6 ( I[ f 2P 
claKa tE (zs f 

s: + s,c l ’ 1 
_ I .!&T,-- T,)+ 52 1 

X 
2T,-2T, 

Sl 
+Cz f&W 

> Ii 2P, 

h = g E&J 

While the closed form solution appears unlikely, 
equation (51) can be easily solved numerically by any 
standard method, such as a Runge-Kutta or Gear 
method. In the absence of radiation, setting K, = 0 in 
equation (51) yields 

S dS,=W2 
‘dt 2 

which yields 

with 

s, = W(T)1’2 

W = 2(3~1,)“~ 
l-(l+j.l)“2+p l’* 1 5+(1 +f*p2+p ’ 

/_i = 2(T,- T,fCf;l, 

in agreement with ref. [25]. 
As a numerical example, Fig. 4 illustrates the solid 

fraction distribution throughout the medium at 
various times. The region in which a = 1 is the solid 

IO 

7 
> 

06- 

05- 

04- 

0 

0.3 - 

02- 

0.1 - 

t* =0.04 

I I I I 
0 01 0.2 03 0.4 05 0.E 

T 

FIG. 4. Solidified void fraction profile. T, = 1000 K, 1”, 
=1111K,a,=0.0024m2h~‘,p=2403kgm~3,1(,=1.339 
W m-’ K-l, n = 1.5, A= 4.652 x 10s J kg-‘, C = 0.8368 

J kg-’ K-‘, and K, = 3.937 cm-‘. 
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layer which grows with time. Clearly CI suffers a 
discontinuity at the interface, beyond which SI reduces 
exponentially in the two-phase region. It is important 

to note that the two-phase region is considerably 
thicker than the pure solid layer. Physically what 
happens to the solid fraction distribution is as follows. 

Initially at t = 0, conduction heat transfer will trigger 
an immediate solidification of the liquid at x = 0 layer 
by layer, while the radiative heat transfer will induce 
some solidification away from x = 0 inside the liquid. 

In other words, conduction heat transfer is primarily 
responsible for the surface solidification which leads to 
the formation and growth of a pure solid layer (r = I) 
whereas the radiative cooling is responsible for the 

internal solidification which produces a non-zero solid 
fraction ahead of the pure solid layer. 

An alternate but interesting plot is shown in Fig. S, in 

which the locations ofthe propagation fronts of various 
fractions in the medium are displayed. The curve x 
= 100% represents the interface front of the pure solid 
layer which is slightly ahead of the layer without 
consideringradiation. At a given time, say, t = 0.4 h, the 
penetration of the 3OSC and IO”,{, solidification 
wavefronts are, respectively, at least four and ten times 
ahead of that of the loo”,; front. Also exhibited in the 
figure is the equivalent solidified thickness that would 
result if all the solidified medium is packed together. 1 t is 
seen that if the radiation heat transfer is ignored, it 
would take four times longer to produce an equivalent 
solidification layer thickness of 0.01 m and five times 
longer to produce a 0.02 m solidified layer. It also 
should be noted that the equivalent thickness is 
substantially thicker than the loo”,; curve, indicating 

“i 

t, hr 

L' 

FIG. 5. Propagation fronts of various void fractions (same data 
as Fig. 4). 

that the solidification process has been greatly 

augmented by the internal solidification and that the 
internal solidification is in fact much more significant 
than the surface solidification. 

The above simple solution based on the integral 
technique in fact agrees reasonably well with the more 

sophisticated solution without linearization. The latter 
can be found elsewhere 1261. 

4. CONCLUSIONS 

The present study has suggested a potentially more 
general phase-change model than the current one. 
Governing differential equations and interfacial 
conditions have been reformulated for a class ofmelting 

and solidification problems involving internal thermal 
radiation. They have been found useful in clarifying 
certain inconsistencies in the existing formulations of 
the interfacial condition. When one of the two phases of 
a medium is absolutely opaque. the internal phase 
change diminishes and the present model is shown to 
reduce to the classical model which ignores the two- 
phase region. 

Analytical solutions, one exact and two ap- 
proximate, to three specific problems have been 
obtained to illustrate the unique characteristics of 
internal solidification as opposed to conventional 
surface solidification. The results show that the 
existence of the two-phase layer is not only 
fundamentally important but also has great signifi- 
cance in practical applications as the layer thickness 
can be considerably thicker and the mass solidified 
within can be more substantial than that of the pure 
solid layer. 

Finally, it should be pointed out that while the 
present formulation is fairly general. it is based on some 
idealizations which could be gradually removed later. 
In particular, it would be of interest to remove the 
assumption that the absorption coefficient is constant 
by using different absorption coefficients for different 
phases, or by incorporating into analyses the 
dependence of both absorption and scattering 
coefficients on evolution of internal melting or 
solidification. It is noted that the basic formulation 
[namely, the energy equation (I). the continuity 
equation (4) and the interface condition, equation (1 X)] 
is applicable to the case that considers scattering in the 
two-phase region. The equilibrium assumption should 
be relaxed to examine the non-equilibrium effects, such 
as supercooling, etc. Extensions to allow for eutectic 
media which have no single melting temperature and tcl 
include buoyancy effects in the two-phase region due lo 

the density difference are a few more examples that 
remain to be studied. 
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APPENDIX 

INTERFACIAL CONDITION AT S, 

Consider a material volume V(t) with an external material 
surface A(t) as shown in Fig. 6. The volume V(t) is composed of 
twovolumes v,(t) and V,(t) divided byaninternal surface A,(t). 
The subscripts 1 and 2 represent the pure solid and the two- 
phase regions, respectively. Similarly, the external surface of 
V(t) is the sum of the two surfaces A,(t) and A&), embedded in 
the two regions. As the internal surface A,(t) moves with an 
arbitrary velocity s(t), let the quantity F per unit mass of the 
material suffer a discontinuity across the internal surface with 
F, and F, as the quantities on each of the two sides. If $ is the 
e.fflux of the quantity F through the bounding surface A(t), and 
F is the rate of generation of the quantity per unit mass at each 
point throughout the volume V(t), then the general integral 
balance for the quantity F can be written as 

d 

dt sss V(l) 
pF dV= -jj*,.,n.9 dA+jjj”,,@ dV 

(Al) 

where n is the unit normal vector directed outwardly with 
respect to the boundary surface A(t). Application of the 
generalized Reynolds transport theorem [16,17] to the term 
on the LHS of equation (Al) and rearrangement results in 

+ 
ss 

ni.(P1F,-P,F2)ui dA = 
A,(r) sss 

pP dV (A2) 
V(l) 

where ni is the unit vector normal to A,(t) in the direction from 
V, to V,. We let the areas A,(t) and A,(t) shrink down to A,(t), 
so the total volume V(t) + 0 while the area of the interface, 
A,(t), remains finite. The volume integrals vanish and n, --t 
-ni, n, -+ ni in the limit and equation (A2) becomes 

ss 
Ai,r) {nl * blFlh -a)+&1 +nZ * bzF2(u2 -uJ 

+&I} dA = 0. 

Since this relation holds for any area Ai( the integrand must 
vanish identically to yield 

nl.I~,F,(u,-ui)+~ll+n2’CP2F2(uZ-ui)+~21 =0 (A3) 

which is the general balance equation at the interface. 
From equation (A3) the balances concerning mass, 

momentum and energy can be obtained with proper 

(II (2) 

A=A,+A, v-o 

v = v, + v, 

FIG. 6. Control volume on interface. 
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identification of the quantity F and the eftlux 4. The mash 
balance is obtained with F = 1 and 4 = 0, viz. 

p,(u,-ui).nl +pz(u,-ui).n2 = 0. (A41 

To obtain the energy balance we set 

r=e+$ 
4 = q-n.” 

where q is the net flux which consists of conductive and 
radiative fluxes, e is the specific internal energy, and x is the 
pressure tensor. With these identification for F and $ the 
energy balance becomes 

+ni.[P2(hl+~~~“2-“il+P2”,-‘2.“1+qi] = 0 (A5) 

where the relationships n = -pa+5 and h = e+p/p have 
been used. Usually, in comparison with the thermal energy 
exchange, the mechanical energy exchange and the work done 
by viscous stresses can be neglected to yield 

plh,(n,-ui)‘n,+pzh,(u2-ui).n2+q,.n,+q2.n2 
= 0. (A6) 

Since region 1 contains only the pure solid, we have 

P,(u, -+)*n, = ~:(u,~ -nJ*n,, (A7) 

p,h,(u,-ui)*nI = p~h,(~,~-uJ~n,. (A8) 

On the other hand, region 2 contams a two-phase mixture. 
Thus, 

PzhZ(uz -IQ. n, = (1 -als:)p~h~(u,-ui)~ n, 

+~is~&hT(usZ -ui)’ nSz- (AlO) 

The above four equations are substituted into equations (A4) 
and (A6), and the resulting equations can be combined by 
eliminating the term &(u,~ -3. ni between them. After 
considerable manipulations, we obtain the interfacial 
condition at x = S,, 

q, ‘n, +q2’n2 = (I -zls;)~~~i(u,-u,).n,. (All) 

Noting that 

u;n, = dS,/d/. 

equation (Al I) can be written finally as equation (16) in the 
main text. 

FUSION ET SOLIFICATION AVEC TRANSFERT RADIATIF INTERNEm--UN MODELE. DE 
CHANGEMENT DE PHASE 

RCum&On propose un modele g&n&al de fusion et de solification qui tient compte d’un phCtnom&ne 
inttressant qui est l’existence d’une zone diphasique dans laquelle un changement partiel de phase peut 
s’opkrer. La zone diphasique est attribute B la fusion ou & la solification interne (en opposition avec fusion ou 
solidification superficielle) induite par un rayonnement thermique. Le modele propose trois couches 
physiques : les couches liquide et solide comme dans le modile classique et entre elles une couche diphasique 
(partiellement liquide et solide). On montre que dans le cas limited’un milieu opaque, I’ipaisseur de la couche 
diphasique diminue et le modZle proposi: se reduit au cas classique. Une formulation math&matique est 
prbsentee pour les problemes de changeplent de phase avec transfert radiatif interne ; elle clarifie quelques 
points inconsistants de la littkrature. Une solution exacte et deux autres approchies pour trois problkmes 
simples de solidification sont prttsentees pour illustrer I’effet de la zone diphasique sur la solidification des 

matCriaux semi-transparents. 

SCHMELZ- UND ERSTARRUNGSVORGANGE MIT INNEREM WARMETRANSPORT 
DURCH STRAHLUNGm-EIN ALLGEMEINES MODELL FtiR DEN PHASENtiBERGANG 

Zusammenfassung--Es wird ein allgemeineres Model1 fiir den Schmelz- und Erstarrungsvorgang 
vorgeschlagen, bei dem ein interessantes PhPnomen, niimlich die Existenz eines Zweiphasengebiets, in 
welchem teilweiser Phasenwechsel auftreten kann, beriicksichtigt wird. 

Das Zweiphasengebiet entsteht durch inneres Schmelzen oder Erstarren (im Gegensatz zum Schmelzen und 
Erstarren an der Grenzflgche) und wird durch innere Wlrmestrahlung herbeigeftihrt. Das vorgeschlagene 
Model1 geht von drei physikalisch unterschiedlichen Schichten aus : der fliissigen und festen Schicht wie im 
klassischen Model1 und einer Schicht aus einer Zweiphasenmischung (teils fliissig, teils fest), die sich zwischen 
den beiden anderen befindet. Es wird gezeigt, dalj im Grenzfall lichtundurchllssiger Medien die 
Zweiphasenschicht verschwindet und sichdas vorgeschlagene Model1 aufden klassischen Fall reduziert. Eine 
entsprechende mathematische Formulierung wird fiir Phaseniibergangsprobleme mit innerer 
WBrmestrahlung vorgeschlagen und dazu verwendet, einige Widersprlche in der vorhandenen Literatur 
aufzukliren. SchlieDlich werden eine exakte und zwei ngherungsweise Llisungen Kir drei einfache 
Erstarrungsprobleme angegeben, urn den EinAul3 des Zweiphasengebiets auf die Erstarrung von 

halbtransparenten Materialien zu veranschaulichen. 
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fI.JIABJIEHME ki 3ATBEPflEBAHkiE IlPM JIYWKTOM fIEPEHOCE TEl-IJIA B 06LEME 
BEIIJECTBA. OBO6IlJEHHAR MOAEJIb mA30BbIX rIPEBPAlIJEHAfi 

AHHOTPUHR- npeAnomeHa6oneeo6Iuaa MeAenb nnaBneHwn w 3aTBepAesaHHn an8 yrera BHTepecHoro 

RBneHHll CylueCTBOBaHHK AByXaa3HOfi 30Hb1, B KOTOpOfi MOryT IIpOHCXOAHTb YaCTH'IHbIe +a3OBbIe 

npespaueaer. Taxan 30Ha noKenneTcK B pe3ynbTaTe nnaBnetniK wwi 3aTBepAesaHHn BHy~pti o6aeua 

aen.tecTaa (B oTnm5ie OT nosepxeocmoro nnaBneHkfK UB 3aTBepAeBawn). BbI3BaHHoro BH~T~~HHHM 

TeIL"OBbIMH3ny'ieHAeM.MOAenb BKnIO'iaeTTpHCnOK:XWK5iti U TBepAbIii CnOB, KBK B B KJIiWBi’iCCKOfi 

MOAenA, U AByX+a3HbIfi CMelllaHHbIii CnOti (SaCTWiHO XGiAKOCTb U YaCTHSHO TBepAaX @asa), 

pacnonoxeHHbll h4emAy HHMU. IloKa3aH0, 4To B npeAenbHoM cnyqae HenpospaqHofi cpeAb1 TonuuiHa 

AByX+a3HOrO CnOIl yMeHblUaeTC5I H IIpeACTaBneHHaK MOAenb CBOAliTCfl K KJlXCliWCKOk &WJIOXCIia 

COOTBeTCTByHJlltaR l$OpMyna AJlSI OIIWCaHAU TeIInOO6MeHa C @a30BbIMU 83MeHeHHIMW IIpU JIyWCTOM 

IICpeHOCe TeIIna BHyTpEi o6aeMa BeIWCTBa, KOTOpaK HCIIOnb3yeTCK AJIK BbIIlCHeHWR HeKOTOpbIX 

IIpOTHBOpe‘IEiii, OTMe'IaeMbIX B OIIy6JHiKoBaHHbIx pa6oTax. &'i HaKOHe& IlpeACTaBneHbI OAHO TOYHOe 

ki ABa npIi6nWKeHHbIX peUIeHEi%I TpeX IIpOCTbIX 3aAa'I 3aTBepAeBaHWI, KOTOpbIe WUIEOCTpkfpyIOT 

BnenHueAByx@a3Hok 30HbI Ha saTeepAeBaHaenonynpo3pauHbIx MaTepAanos. 


