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Abstract—A more general melting and solidification model is proposed to account for an interesting
phenomenon, namely, the existence of a two-phase zone in which partial phase change can occur. The two-
phase zone is attributed to internal melting or solidification (as opposed to surface melting or solidification)
induced by internal thermal radiation. The model proposes three physical layers : the liquid and solid layers as
in the classical model, and a two-phase mixture (part liquid and part solid) layer in between. It is shown that in
the limiting case of opaque media, the thickness of the two-phase layer diminishes and the proposed model
reduces to the classical one. A corresponding mathematical formulation is presented for phase change
problems with internal radiative transfer, which is used to clarify some inconsistencies in the existing literature.
Finally, an exact and two approximate solutions to three simple solidification problems are also presented to
illustrate the effect of the two-phase zone on solidification of semi-transparent materials.

NOMENCLATURE B, a quantity, 2 K,n’a T2 /p*C;
A, surface area, or coefficient in temperature Tv.jii spectra'l transmittance.from region j to
polynomial: ther 81.de through an interface;
B, coefficient in temperature polynomial ; 9, dimensionless terpp erature,. /Ty
c specific heat ; A, latent heat of fusion per unit mass;
e, specific internal energy; T pressure. tensor; .
e,. Planck function: p; superficial mass density;
E,,  exponential integral function of nth kind; p¥,  true mass density; L
H, emission from a semi-transparent medium; Pr.ji §pectra1 reflectance back to region j by an
I, radiosity : interface;
K,  gray absorption coefficient; o Stefan-Boltzmann constant;
K. conductivity; T, opt?cal thfckness, K,x;
K,,  spectral absorption coefficient ; ts» optical thickness, K,S,;
n, mass flux, or index of refraction; K stress tensor.
n, unit vector; Subscripts
q total heat flux; 1, region 1;
G radiative flux; 2, region 2;
r mass solidification rate per unit volume of b, characteristic thickness similar to boundary
the mixture; layer thickness;
S, location of an interface or propagation i, interface ;
front of a given void fraction; 1, liquid;
Sy,  first interface; m,  melting point;
S5, second interface; o, first time liquid drops to melting
L time; temperature;
Z‘, temperature; s, solid;
T, mean temperature, [(T4 + T4)/2]/4; W, wall;
u  velocity; v, frequency;
v,  volume; ) oo, far away from wall;
X, physical coordinate normal to wall. eq, equivalent.
Greek symbols Superscripts
a, solid volume fraction; +, positive x direction ;
%, thermal diffusivity; -, negative x direction.
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L AINTRODUCTION AND CONCEPT
OF INTERNAL PHASE CHANGE

MELTING and solidification of materials by heat
transfer is of importance in many technical fields and
has been a subject of interest for over a century. In the
past ten years, considerable attention has been turned
from opaque to non-opaque materials, in which the
internal thermal radiation can no longer be ignored.
Typical examples of applications range from low
temperature problems. such as ice melting by solar
energy, to high temperature problems, such as crystal
growth, the solidification of slag in advanced MHD
coal-fired power plants. and the melting or solidifi-
cation of uranium fuels (a consideration in nuclear
reactor safety).

Recent studies to ascertain the effects of internal
thermal radiation in non-opaque materials during
phase change are numerous [[-10] but exhibit
considerable differences in their formulations. Table |
compares and summarizes those formulations for a
simple, classical Stefan problem where the surface of a
semi-infinite, semi-transparent liquid, initially at the
melting temperature T,. is suddenly lowered to a
constant temperature 7,

It is seen that while all researchers agree on the
differential-integral equation, they disagree on the
interfacial condition. Some [!, 2. 10] suggest the
inclusion of a net radiative flux in the classical
expression of Stefan’s interfacial condition, while
others [3-5] suggest that two nct radiative fluxes be
included. On the other hand, a differential term of
radiative flux is suggested in rel. {9] while an integral
term is suggested in refl. [8]. Finally, ref. [9] simply
employed the same condition as that of conduction-
controlled solidification. For the same problem, except
in the limiting cases of conduction-dominated or
extremely opaque materials, the different interfacial
conditions would undoubtedly lead to different results.
The present study is concerned not so much with the

differences in numerical results as with the fundamental
question of what the proper condition should be.

All of the existing formulations are based on the
premise that there are two distinct phases, one being
pure liquid and the other pure solid, separated by an
interface located at X = S,. Consequently, they have
either missed or overlooked an interesting pheno-
menon, namely, the possible existence of a two-phase
zone between the pure liquid and the pure solid zones
when the internal radiation becomes important. To
llustrate the concept of ‘internal phase change’
consider the melting of a semi-transparent, semi-
infinite solid at its melting point before exposing to an
external thermal radiation heat source. The existing
model [1- 10]. which is the same as the classical,
conduction-controlled model, assumes melting from
the top and proceeding downward layer by layer,
resulting in a pure liquid layer on the top of the pure
solid layer as shown in Fig. 1{a). To see il this model is
appropriate when the internal thermal radiation is
significant, consider a small strip within the solid layer
asa control volume and make an energy balance. There

; External
‘ ‘ ‘ ‘ ‘ l l radiation
T.'u
NN Pure
N N -
N \\\\ S\\\\ liquid
Internal ~-
\ melting
! {two - phase)
__3 ————————— - Controt
_____________ volume
dx
T
_Pure
solid T

{a)

Fic. 1. (a) Existing model. (b) Current model with internal
melting (internal phase change).

Table 1. Comparisons of existing formulations for the solidification of a semi-infinite liquid initially at melting temperature
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are no net energy exchanges in the volume by
conduction or convection {density being taken as
constant to simplify the discussion here). However, the
solid in the small control volume, through its action-at-
a-distance characteristics, does absorb part of the
thermal radiant energy of the external source. This net
gain of radiative energy obviously cannot raise the
sensible heat without first melting the solid in the
control volume. (Similar to all the studies on this
subject [1-10], we consider, without loss of generality,
only the pure material with a unique melting
temperature and assume no thermal stress or non-
equilibrium effects like superheating or supercooling,
etc.) Since the amount of energy absorbed is not
necessarily exactly equal to the latent heat of melting of
the solid in the entire control volume, only partial
melting can be expected. Moreover, as the control
volume located at the deeper location absorbs less
radiative energy, a smaller portion of the solid within
the volume is melted. Thus the percentage of solid
melted should diminish downward, resulting in a two-
phase zone located between the newly formed pure
liquid layer on the top and the original solid layer at the
bottom as shown in Fig. 1(b).

Similar conclusions can be reached about the
possible existence of a two-phase layer (i.e. an internal
solidification}inthe solidification of a high temperature
semi-transparent medium because of the rapid internal
radiative cooling.

The existence of a two-phase zone has long been
mentioned in the meteorological literature. Dorsey
[11] explicitly stated that

“When a block of ice that is above water is exposed to
light, small cavities partly filled with water may be seen
to form throughout the body of the ice, provided that
the temperature of the ice is not too low. . .. Never-
theless, internal melting occurs, and proves that the
interior portions of a mass of ice may be melted by
radiant heat which has traversed other portions of the
mass without melting them. The consequence is that
such a mass, raised to the temperature of 32°F, will have
some of its parts liquid and some solid.”

Knight [12] also stated that “when an ice crystal is
warmed through its volume, especially if by radiation,
internal melting occurs.” Other referencest mentioned
the term “internal melting” [7, 9, 13, 14], though with
some ambiguity.

From the above, two conclusions can be drawn.
First, the internal phase change phenomenon is real
and known in the meteorological literature, but

1 Upon the completion of the paper, it was brought to the
authors’ attention that a recent work (L. A. Diaz and R.
Viskanta, Melting of a slab of semitransparent material by
irradiation from an external radiation source AIAA-81-1047,
ATAA 16th Thermophysics Conference, June 1981, Palo Alto,
CA} observed no internal melting within n-octadecane.
Unfortunately, the solid n-octadecane is opaque (as was so
assumed in their paper) so that little internal melting could be
expected.

HMT 26:4 - J
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somehow has not been addressed in the heat transfer
analysis of semi-transparent materials. Secondly, while
the detailed microscopic mechanism ofinternal melting
is complex and not well understood (and which is
beyond the scope of the present study), the macroscopic
end results are obvious, namely, radiant heat sources
produce internal melting.

Other than the above observations, an analytical
work in nuclear reactor safety also indicates a two-
phase layer in the melting of reactor fuels of conduction
with an internal heat generation [21]. This further
confirms the need to incorporate the two-phase layer in
the phase change analysis of semi-transparent
materials, since the internal radiation is equivalent to
an internal heat source or sink.

2. MATHEMATICAL FORMULATION

2.1. Model

A more general phase change modelis proposed here
which comprises three physical layers [Fig. U(b)],
namely a pure solid layer, a pure liquid layer and a two-
phase mixture layer in between. The model proposed is
chosen to contrast with the conventional conduction-
controlled “two-layer” model, shown in Fig. 1(a). As
will be seen later, under the extreme conditions in which
the internal radiative transfer is absent or insignificant
(such as with opaque metals or transparent materials),
the thickness of the two-phase layer diminishes to zero
and the proposed “three-layer” model reduces to the
conventional “two-layer” model. In this sense, the
conventional model can be regarded as a limiting case
of the present model, which is applicable to semi-
transparent materials as well.

The following mathematical formulation is based on
the model proposed for the solidification of a semi-
infinite liquid initially at a temperature T, , higher than
the melting temperature T,,, as shown in Fig. 2. The
medium considered is assumed to be semi-transparent,
homogeneous and isotropic with constant and
identical thermophysical and optical properties in both
phases. A unique melting temperature is assumed to
exist and the two-phase region is assumed to be in
thermal equilibrium at the melting temperature. Since
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solid phase Liquid
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F1G. 2. Solidification of a semi-infinite liquid with an initial
temperature higher than the melting temperature.



624

the complex refractive indices of both phases are
assumed to be the same, the albedo of scattering is
negligible. Finally the change in density during
solidification is assumed to be small, such that
convective motion can be ignored.

2.2. Two-phase region

In order to account for the release of latent heat of
solidification by internal solidification, an additional
source term, Ar, should be included in the energy
equation

bT
pC-I')T‘“V'KCVT‘FV'qr:AF ())

The compressibility and the viscous dissipation terms
have been neglected. The transient and conductive
terms in equation (1) may be important for eutectic
solutions with variable freezing points. With no
convection and a constant freezing temperature,
equation (1) simplifies to

i[}f» = Ar. 2)

X
The above is coupled to the continuity equation as the
solidificationrateisrelated to the solid volume fraction.
Following our recent study [ 15] onthecondensation of
a high temperature gas—vapour mixture, the species
equation of the solidified phase

ép
Lo Ve [pu]+r ()
E
can be written as
oo r
e ——V'[IXUS]“"—; (4)

ot

&

in which « is the solidified volume fraction and the
superficial solid density, p,, is related to the true density
p¥ by p, = ap¥. In the absence of motion (y, = )
equation (4) reduces to the simple form

fo o
e 5
ot p¥ ®)

Recalling that the temperature profile in the two-phase
region is flat at 7, the solid volume fraction
distribution can then be determined by solving
equations (2) and (5). These can be combined as

éo 1 Ogq,
= e P> (6)
Ot pXioéx ©
subject to the initial condition
=0 at t=1t, (7)

where ¢, stands for the time the liquid temperature
located at x = 0 drops to its melting point. Noting that
8g./2x is an integral equation to be supplied from the
transfer equation, no other boundary condition needs
to be specified.
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2.3, Pure liguid and solid regions
In the pure liguid region, the formulation is
straightforward and can be summarized as

pl*q% - 1\1’(; - ‘(ﬁ\ NsLS,<x (8
with

T=T, at =1, 9

T=T, at x=S8,0 (10)

T =T, at  x = (1

where S, is the moving front of the second interface
between the two-phase and pure liquid regions.

Similarly, for the pure solid phase, the governing
equation is

subject to
T=T, at (=1, (13)
T=T, at x=0. (14)
T=T, at x=S5§,0) (15)

where S,(¢) is the first interface between the pure solid
and the two-phase region.

2.4, Interfacial condition at x = S

The above equations and conditions are incomplete
without further formulating the interfacial conditions
atx = §, and S,. Special attention is needed for x = §,
as it involves a discontinuity concept due to internal
solidification by radiation. As shown in the Appendix,
the condition at x = §, is

T © 0T
(K ©ox ) N (KC AN’)
2x Is; éx

-i—( I —x )p?ﬁa( e —uz-n,). (16)
\ lb‘ . \ dt /

The above interface condition is quite general as it
allows for the convective motion of the medium should
the density change during solidification. In the present
problem, no change in density is assumed. Therefore
¥ = p¥, = p¥, = p* and u;, = ug, = u, = 0. Further-
more, under the assumption of a single melting
temperature, ¢T/dx =0 at x = S; the interfacial
condition at x = §, reduces to

|
|

iyl
e
s/ Is)

or ‘ 1 : \ L. dS,
K —al +a :{1«-«1 *; 001
( fh\f\")sl ! s, d }s; ISy )p dr
{17a)
subject to the initial condition
S, =0 at =1, {17b)

Note that the above condition contains a term
involving x(S}) which is missing in refs. [1-10]. It
should be emphasized that the solid volume fraction on
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the two-phase side adjacent to the interface, «(S7), is
not necessarily unity nor zero; it is a time-dependent
unknown to be determined by the solution of the
differential equation for the two-phase region [namely,
equation (6) subject to equation (7)].

It appears that the differences in the existing
interfacial conditions arise from the inconsistent
treatment. of the radiative flux terms across the
interface, namely ¢.(S7) and ¢(S;) in equation (17a).
For example, it has been stated [3, 4] that if the phases
on both sides of the interface have identical opaque
and transparent bands then ¢.(S;) = ¢,(S$7). In ref.
[71, a term such as [0q,(S7)/0x] ds is proposed.
Mathematically, this term represents the first order
approximation of [¢{S7 )~ q {87 )] if the Taylor series
expansion is employed. In a later study [9], however,
the same authors decided to drop this term. It can be
shown that for semi-transparent media on both sides of
S,, the difference between ¢,(St) and ¢,(S7) is of the
order of K,AS where AS is the distance between S| and
S7,sothat[4,(8])—¢{(57)] = 0as AS — 0. Therefore,
the interfacial condition for semi-transparent media
can be further simplified to

s
s

K oT ={l—-u
c@x sy - dt

The inclusion of this continuity {or cancellation) of the
radiative fluxes across an interface should be of no
surprise since it was used implicitly in an early paper
[22].

(18)

2.5. Limiting cases and clarification of existing interface
conditions

In the extreme limit involving an opaque medium
(opaque in the sense of having an infinitely large
absorption coefficient rather than a large physical
dimension), we have K, — oo and dS — 0, yielding an
indeterminate case. However, it can be resolved if one
recalls that

_ 4n?¢ T*
= 73K ox
and
oq,  4n’e O°T*
ax 3K, ax?

for an opaque gray medium. As K, - o0, g, — 0 and
[£q,/0x] — 0. Using these values in equations (6) and (7)
yields the obvious solution that & = 0in the two-phase
zone. This means that the two-phase zone diminishes
completely and we only have two regions left, the pure
liquid and the pure solid layers. Therefore, if the
original liquid phase is extremely opaque, and the
newly solidified phase is, somehow, semi-transparent,
the interfacial condition given by equation (17a) for the
solidification of a saturated liquid is

aT

ds
e = ¥}
<7 p*A

- dt

5~

4:

(19a)
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where the subscript 1 has been dropped, since only one
interface remains. If the liquid is superheated initially,
then a conduction term on the liquid side should be

added
K oT ~(k oT «; 9
( ca)s_“hs_'- e s++ﬂ Ad

Similarly, if the original phase is semi-transparent but
the solidified phase is extremely opaque, the two-phase
region diminishes also. This can be easily explained on
simple physical grounds. If the solidified phase is
extremely opaque, only the solid interface canexchange
radiation with the liquid. Since the interface
temperature is no lower than the melting point (and
neither is the liquid temperature} no internal
solidification occurs. Mathematically, g, =0 and
dq,/0x = 0 everywhere within the liquid region if the
liquid is initially at melting temperature. Thus, by
equations (6) and (7), « = 0, implying the absence of
two-phase zone. If the liquid is superheated initially,
8q,/0x < Ofor a monotonically increasing temperature
profile and equations (6} and (7) would yield o < 0, a
physically impossible situation, which further confirms
the absence of a two-phase zone. Therefore, for an
initially saturated liquid

oT ds
K.2o) =p0as
( 5x> P
and

< T (9T .
cox Jo T\ Mo J. T

foraliquid thatis superheated initially. Without further
elaboration, it is sufficient to point out that if both
phases are opaque, the interfacial condition reduces to

oT T ds
K2} (k& e
( °6x)_ ( °6x>s++pldt (19)

which is identical to the conventional heat conduction
condition.

Under the limiting cases examined above, all the g,
terms in equations (19a)«19d) or Table 1 are in fact
numerically equal to zero and should be dropped. The
end results are the same as if we have examined the
limiting cases of equation (18) rather than equation
{(17a). This can be readily proved by examining the
interface between a semi-transparent medium and an
absolutely opaque medium. By applying Fresnel
relationships across the interface one will find a perfect
reflection on the semi-transparent side and no emission
from the opaque to the semi-transparent medium,
implying no net fluxes on either side of the interface.
These redundant ¢, terms are nevertheless kept in
equations (19a)-{19d)for ease of comparison with those
in Table 1 since the latter, except one, contain some
forms of gq,.

The above discussion reveals that the existing
formulations [1-5,9, 10]in Table 1 are applicablein the
limiting case when the medium is opague on one or

(19b)

(19¢)

ds
01
R A (199)
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both sides of the interface with a negligible two-phase
zone. The present formulation, however, is preferable
when applied to the gencral case where the semi-
transparent medium remains semi-transparent after
phase change.

2.6. Interfacial condition at x = S,

Following the derivation of the condition at x = S,
the other interfacial condition at x = S, in Fig. 2 can be
obtained analogously to equation (A11) as

q3°ny+q; 0y = alg pf Alug, ~u)-n, (20

in which the unit vector n; points in the positive x
direction while n, points in the opposite direction.
Assuming no change in density during the phase
change and taking into consideration the continuity of
the radiative flux, it simplifies to

aT cT | .
Ko —| —Ka— =ua p*Ai—" (2la)
OX |s; [ L’ S,
subject to the initial condition
S,=0 at =1, (21b)

In the problem of interest, a single melting temperature
is assumed. Thus,

oTY\ |

— =0

x Jig,

Now, for the solidification of a liquid initially at a higher
temperature than the melting point, dS,/dt > 0 and
equations (21a) and (21b) would predict a negative
temperature gradient at x = 53 if 2(S, ) has other than
zero or negative values. This is, of course, physically
impossible, as are negative «’s. Therefore, we conclude
that the interfacial condition at x = S, will have to be

x=0 at x=235, (22)
which implies
T
=0 at x=385;. (23)
CX

The concept of x = 0 at x = §, and a discontinuous
value of xat x = S, is in fact similar to what happens in
the solidification of an opaque binary eutectic alloy
[18-20], namely, a zero value of the solid {raction at the
liquidus front and a finite but discontinuous value at the
solidus front.

Mathematically, one hasto solve for the solid volume
fraction profile, » = x(x, 1), for the two phase region.
Then by setting the resulting solution equal to zero at
x = S,(t), i.e. a[S,(1), 1] = 0, the growth of the second
interface, S, = S,(1). is determined implicitly.

2.7. Interfacial conditions and governing differential
equations for melting problems

For completeness, the analogous formulations for
melting problems are briefly summarized here.
Consider a semi-infinite solid initially at a uniform
temperature T, below the melting point, T, when its

surface temperature is raised to 7,(> T, > T,). The
formation of three regions like those in Fig. 2 can be
expected, except region 1 becomes a pure liquid while
region 3 remains as the original solid. The governing
differential equations for each region remain un-
changed. As for the interfacial conditions, a
discontinuity in the solid volume fraction exists at the
liquid-two-phase interface, but not at the second
interface. They can be readily obtained as

ds,

¥
s/ / dt

oT |

X

=

{24)

and

s, =1 (29

atx = S;and S,, respectively. For opaque cases, results
similar to equations (19a)-(d) can be derived and will
not be repeated here.

3. ANALYTICAL SOLUTIONS

To elucidate the concept of the internal phase
change, some highly simplified solidification problems
are to be examined and solved using the formulation
presented here.

Consider a gray semi-transparent, semi-infinite
liquid bounded by a black surface. The medium is
assumed to have a distinct melting point and the non-
equilibrium effects, such as subcooling etc., are
neglected. The solid and liquid in the two-phase
mixture are assumed to thermally equilibrate
instantaneously. Thermophysical and radiation pro-
perties are assumed to be constant and identical in both
liquid and solidified phases. Since the refractive indices
remain unchanged during the phasc change, the albedo
of scattering within the medium can be neglected.

3.1. Solidification of a liquid at melting point
Radiation-controlled solidification

The first specific problem examined is the sol-
idification of a pure liquid, initially at its melting point,
T,, when its surface temperature is suddenly lowered
to T, < T,. The conduction-radiation parameter
(N = K.K,/4n*¢T%) is assumed to be small enough
that the solidification is solely controlled by thermal
radiation. This is not as restrictive as it sounds since it
accurately represents the solidification of high
temperature liquids. The other extreme of N —
represents the well known conduction problem which
has been thoroughly examined in the literature. In as
much as the primary attention is focussed on the
characteristics of the internal solidification, we would
further restrict ourselves in this problem and the next to
the solidification process up to the time when the liquid
at s = 0+ reaches 100% solidification by radiative
cooling. Since the temperature remains unchanged
throughout the medium, the governingequations in the
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two-phase region are given by equations (6) and (7) with

aq,

= 2K, n*o(To— TR E,(7)
0x

(26)

where t and x are measured from (ie. normal
to) the wall. Clearly, the heat transfer to the wall is
q, = n*o(T% — T%) from equation (26), and the local
solid volume fraction can be easily solved to yield

alx, t) = E,(7)t* 27
where the dimensionless time is defined by

t* = 2K, .n?c(TE —TE)i/p*A.
Similarly, the internal local solidification rate from
equation (2) is
2K, n%c

1dq
=. L= T4 —THE
T T (Ta—THE)

from which the total solidification rate throughout the
medium can be found,

28)

Tiotat = J rdx = n’o(TH—T3)/A (29)

0]
as is expected.

The local volume fraction and the local internal
solidification rate are displayed in Fig. 3. It is seen that
they decay exponentially with increasing distance from
the wall and are linearly proportional to the fourth
power of temperature, two unique characteristics that
arise when radiative transfer is dominant.
Furthermore, the internal solidification rate is
independent of time because of the constant and
uniform temperature throughout the medium, so the
solid fraction at a given location increases linearly with
increasing time.

The total solidification rate can be utilized to find the
equivalent 100%; pure solid layer thickness when all the

1.0 LI B S At M B S B B M B e B e e e e (L)

T 11T

t=1.0

N S SR VO T N W | B T T T I |
OOIO 05 1.0 1.5 2.00'0'

T

F1G. 3. Local solidification rate and solid void fraction of a
liquid at freezing point by radiative cooling

(t* = 2K, n?0 (T — Ti)t/p*A and r* = Jr/2K ,n%a(T4 = T2).

solidified fractions are packed together,

1 (= 1 [
Seq=? . adr:; ormmdt

_ nfa(T5— Tyt

e 60

which illustrates a linear growth in contrast to the
conventional square root of time growth in
conduction-controlled solidification.

Finally, another observation can be made regarding
the characteristic thickness of the two-phase layer. In
accordance with equation (27), the internal solidifi-
cation penetrates to an infinite extent because o« — 0
only when x — co. However, if a two-phase layer
thickness is alternatively defined as one whose solid
fraction at the outer edge of the layer is equal to 19 of
that at the innermost edge, i.e.

o(xp, 1)/a(0+, 1) = 0.01, (31)

then from equation (27) we find E,(z,) = 0.01, which
yields the characteristic optical thickness of the layer as

(32)

Therefore, the less opaque the medium, the thicker the
two-phase layer and vice versa.

Itis seen that the exact solution has been obtained for
the above simple problem. In the following, two slightly
more complicated problems are considered. Exact
solutions appear to be unlikely; only approximate
solutions will be attempted.

T, = 3.

3.2. Solidification of a liquid above melting point—
Radiation-controlled solidification

The problem considered is identical to the above
except that the fluid is initially at a temperature, T,
higher than the melting point. In the pure liquid region,
equation (8) is simplified to

*CE)T _ _ 0g,

—_— , O0<1t
ot Ox =

p (33)

with the initial condition given by equation (9) and

a o0
. aq' = 226 T*E, (1) + 2n? f T4(r)
T

0

x E{(lt—7')) dv' —4n?aT*(z). (34)

The nonlinear integral form of the radiative flux makes
the closed form solution unlikely. However, this
equation can be greatly simplified using the fact that
E,(lt—7']) behaves as a delta function. As ' — 1,
E, — oo and as |t —1'| increases, E, diminishes rapidly.
As a result, E, behaves like a delta function and
equation (35) can be approximated by

dg,
dr

= 2n%6THE,(t)+2n%aT*(7) f E.(t—=T))
0

x dv'—4n’T*(x) = 2E,()n*6[ T4 — T*()].

This approximation has been used and found to be
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satisfactory in our previous analyses [ 15, 23, 24]. In the
present problem of interest. T* > T%, thus
dyg

a;’ ~ 2 THT)E,(1).

(35)

Employing the above approximation in equation {33),
the transient temperature profile in the pure liquid
region can be found as

0F = 1/[1+43BE, ()] (36)
where
0=T/T,
and
B = 2K n*cT? /p*C.
Internal solidification starts as soon as the

temperature drops to the melting temperature, 7. By
setting 6 = 0_(= T,/T,) in equation (36) yields

E,(ts,) = (0, = 1)/31 (37)

from which the growth of the two-phase layer thickness,
15, = K,S,, can be found implicitly as a function of
time.

Within the delta function approximation, it is noted
that the divergence of the radiative flux given by
equation (35) depends only on the local temperature
and, naturally, the temperature profile given by
equation (36) remains valid in the liquid layer (ie.
T > 1,) even after the appearance of the two-phase
layer.

Turning now to the two-phase region which emerges
after { = t, defined by

to = (0 = 1)/3BE(T )l -0 = (67— 1)/3B.
(38)

The temperature within the region should be
isothermal at T = T,,. The governing equations for «
are again given by equations (6) and (7). Similar to
equation (27), the solution is
2K, n20(TE—T2)
. t) = ""”’\’""pT,:”** E (1)t —tg).

(39)

Once the solid fraction and temperature distri-
butions are known, other quantities of interest can be
evaluated. For example, in the absence of conduction
and convection, the radiative flux represents the total
wall heat flux,

— g, (1) = 26T j" 0*(t,0)E(r) dr.  (40)

0

Prior to solidification, i.e. t < t,, (/ is given by equation
(36). Thus

Ey(7)

rull) ’
_ o A A 1
22T L [143BLE,(T)]*? (1)

After solidification begins {at { > ;) two distinct
regions appear,

KON

g e = UAL05—Ex(x]

X E® 4 @
! J o LU 3peE, e &
where the first term on the RHS can be attributed to the
internal solidification region while the second refers to
the pure liquid region. The above integrations can be
made numerically in a straightforward manner.

If the internal solidification is neglected, the wall flux
given by equation (41) would be applicable not only for
t < t, but for t > t, as well. Then a comparison with
equation (42) shows that the-heat flux to the wall is
underestimated by the amount

Aqwﬂ _ J ’ [0% — 0%(t, )] E,(z) dt
(

2n*e T ,

where 0 1s described by equation (36). As time increases
(t > 1, of course), 6% falls rapidly below the value of 6%,
and, therefore, the error in the wall flux rises sharply.
This can be explained on physical grounds. In the
presence of the internal solidification, by virtue of the
high latent heat of fusion relative to sensible heat effects,
a temperature will be maintained at high levels (ie.
sustained at the melting point), which in turn is
supportive of the radiative heat transport mechanism,
resulting in a great enhancement of heat transfer to the
surrounding wall. Such an effective heat transfer
mechanism is basically similar to the fog formation
process we discussed recently in connection with the
condensation of a hot vapor mixture [15].

3.3. Solidification of a liquid at melting point--
Combined conduction and radiation

As afinal example, consider a more difficult problem
to include the conduction heat transfer in the first
problem. In addition to the two-phase region, a
solidified layer composed of 1009, solid is induced
instantaneously by conduction near the surface at
x = 0. To keep the problem amenable without having
to resort to complicated numerical methods, we
restrict ourselves to using the optically thin approxi-
mation for the solid layer and linearizing T* terms in
the radiative flux expression.

First, consider the two-phase region (x > §;). As
long as the solid layer is optically thin, the divergence of
radiative flux is identical to equation (26) in the first
problem. Since the differential equation and the initial
condition are also identical, the solid fraction
distribution and others obtained in problem 1 are still
valid here except for the equivalent thickness of the
solid layer which should now be

1 el
Seq = Sil0)+ ra J{ o dt

a Ch

2n20(T8 —T%
R

p*i

(43)
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where S, (¢} is the solid layer thickness to be determined
next.

In the solid layer, the governing equations are given
by equations {12)-(15) except ¢, = 0 and the radiative
term can be linearized as

3 _
~ S~ dwe(T4+ T4—2T% = 16026 T (T~ T)
T
44
with
T4 = 4(T4+ T%). 43)

They should be solved simultaneously with the
interfacial condition, obtained by combiningequations
(18) and (27),

K, % . = [p*A+ 2K n?0(TE — TE)E (1s,)t] gditl-
(46)
with
S, =0 at t=0. @7)

The above set of equations with a moving boundary
condition can be solved by the integral technique, the
technique used extensively in studying the conduction
and radiation solidification problems [1, 25] We
assumed a second degree polynomial,

T,—T = A(x—S;)+ B(x—8§,)?, (48)

with three unknown time dependent constants A, Band
S, to be determined by the integral method. Though
somewhat tedious and lengthy, the solution procedure
is generally straightforward. Only the final results are
given below:

A =[6—(8*+4mV/?]/2 49)
with
o =2f/S,,
J =[1+C Ey{zs 114/C,
Cy = 2K, n’a(T5~Tg)/p*A,
n=fQ2T,~-2T,+C,5%)/53,
C, = 16K, ,n*e TXT,—TY/K,,
75, = K8
and
B =(T,,— T, + AS,)/52. (50)

The solid layer thickness is to be determined by solving
ds, [4s, T.—-T, §?
= —Za

dt | 3 3
§2 _ 273
- St A+2(Tm T)] 16K .n*T
6 S, p*C

{[2(1;,- Ty+(T,— t‘r)] S+ A S%} 1)

3 6
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with the initial condition equation (47). In the above
equation,

N\l f  CiAK,
g= (1 - §> I:E% + S.C tEl(Tsx)]

4f C,IK,
= 2T — T+

2T, 2T,
X T+CZ fEl{Ts‘) 2P,
i

P =[8*/4+n]"2,

C,A
h=—12 E,(ts,)

2C
2(,_ 8\ (L2, C,
“Is;\U " 2p PS? P/

While the closed form solution appears unlikely,
equation (51) can be easily solved numerically by any
standard method, such as a Runge-Kutta or Gear
method. In the absence of radiation, setting K, = 0in
equation (51) yields

Ydt 2
which yields
S, = W(n)i/?
with

W = 2(3a)"" [1—(1+u)”2+u]”2
- C.

S+(1+w)' P+ p

u= 2(Tm~ Tw)c/;{‘*’

in agreement with ref. [25].

As a numerical example, Fig. 4 illustrates the solid
fraction distribution throughout the medium at
various times. The region in which « = 1 is the solid

!AO{

0.2H

o] 0.1 0.2 0.3 04 0.5 06
T

FiG. 4. Solidified void fraction profile. T, = 1000 K, T,

= 111K, 2, =00024m>h™%, p = 2403kgm 3, K_ = 1.339

Wm™ K™, n=15 1=4652x 10> J kg%, C = 0.8368
Jkg ' K™Y, and K, = 3937 em ™ L.
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layer which grows with time. Clearly « suffers a
discontinuity at the interface, beyond which o reduces
exponentially in the two-phase region. It is important
to note that the two-phase region is considerably
thicker than the pure solid layer. Physically what
happens to the solid fraction distribution is as follows.
Initially at ¢t = 0, conduction heat transfer will trigger
an immediate solidification of the liquid at x = 0layer
by layer, while the radiative heat transfer will induce
some solidification away from x = 0 inside the liquid.
In other words, conduction heat transfer is primarily
responsible for the surface solidification which leads to
the formation and growth of a pure solid layer {(x = 1)
whereas the radiative cooling is responsible for the
internal solidification which produces a non-zero solid
fraction ahead of the pure solid layer.

An alternate but interesting plotis shown in Fig. 5,in
which the locations of the propagation fronts of various
fractions in the medium are displayed. The curve «
= 100Y% represents the interface front of the pure solid
layer which is slightly ahead of the layer without
consideringradiation. Ata given time,say,t = 0.4 h, the
penetration of the 30% and 10% solidification
wavefronts are, respectively, at least four and ten times
ahead of that of the 1009 front. Also exhibited in the
figure is the equivalent solidified thickness that would
resultifall the solidified medium s packed together. Itis
seen that if the radiation heat transfer is ignored, it
would take four times longer to produce an equivalent
solidification layer thickness of 0.01 m and five times
longer to produce a 0.02 m solidified layer. It also
should be noted that the equivalent thickness is
substantially thicker than the 100%, curve, indicating

[pRe1s]

o0 eX) [Ne

FiG. 5. Propagation fronts of various void fractions (same data
as Fig. 4).

that the solidification process has been greatly
augmented by the internal solidification and that the
internal solidification is in fact much more significant
than the surface solidification.

The above simple solution based on the integral
technique in fact agrees reasonably well with the more
sophisticated solution without linearization. The latter
can be found elsewhere [26].

4. CONCLUSIONS

The present study has suggested a potentially more
general phase-change model than the current one.
Governing differential equations and interfacial
conditions have been reformulated for a class of melting
and solidification problems involving internal thermal
radiation. They have been found useful in clarifying
certain inconsistencies in the existing formulations of
the interfacial condition. When one of the two phases of
a medium is absolutely opaque, the internal phase
change diminishes and the present model is shown to
reduce to the classical model which ignores the two-
phase region.

Analytical solutions, one exact and two ap-
proximate, to three specific problems have been
obtained to illustrate the unique characteristics of
internal solidification as opposed to conventional
surface solidification. The results show that the
existence of the two-phase layer is not only
fundamentally important but also has great signifi-
cance in practical applications as the layer thickness
can be considerably thicker and the mass solidified
within can be more substantial than that of the pure
solid layer.

Finally, it should be pointed out that while the
present formulation is fairly general, it is based on some
idealizations which could be gradually removed later.
In particular, it would be of interest to remove the
assumption that the absorption coefficient is constant
by using different absorption coefficients for different
phases, or by incorporating into analyses the
dependence of both absorption and scattering
coefficients on evolution of internal melting or
solidification. It is noted that the basic formulation
[namely, the energy equation (1), the continuity
equation (4) and the interface condition, equation (18)]
is applicable to the case that considers scattering in the
two-phase region. The equilibrium assumption should
be relaxed to examine the non-equilibrium effects, such
as supercooling, etc. Extensions to allow for eutectic
media which have no single melting temperature and to
include buoyancy effects in the two-phase region due to
the density difference are a few more examples that
remain to be studied.
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APPENDIX
INTERFACIAL CONDITION AT §,

Consider a material volume V(t) with an external material
surface A(t)as shown in Fig. 6. The volume V(t)is composed of
two volumes V, (t) and V,(¢) divided by an internal surface A;(t).
The subscripts 1 and 2 represent the pure solid and the two-
phase regions, respectively. Similarly, the external surface of
V(t)is the sum of the two surfaces 4, (t) and 4,(¢),embedded in
the two regions. As the internal surface A4,(t) moves with an
arbitrary velocity u,(t), let the quantity F per unit mass of the
material suffer a discontinuity across the internal surface with
F and F, as the quantities on each of the two sides. If ¢ is the
efflux of the quantity F through the bounding surface A(¢), and
Fis the rate of generation of the quantity per unit mass at each
point throughout the volume V(z), then the general integral
balance for the quantity F can be written as

SJJJ pF dV = —H n¢ dA+JJJ pF dv
dr 0 ) Ve
(Al

where n is the unit normal vector directed outwardly with
respect to the boundary surface A(r). Application of the
generalized Reynolds transport theorem [16, 17] to the term
on the LHS of equation (A1) and rearrangement results in

——dV+ n*(pFu+¢)dA4
Vit ot A(r)
+J’J’ 0 (pF,—p,Fu; dAzj‘Jf pF dV (A2)
) 40

where n; is the unit vector normal to 4,(t) in the direction from
Vito V,. We let the areas A, (t) and A,(¢) shrink down to A,(t),
so the total volume V(f) > O while the area of the interface,
A;(?), remains finite. The volume integrals vanish and n, —
—m;, 0, — n; in the limit and equation (A2) becomes

J‘JV {n; [p(Fi(u,—n)+ ¢, ]+, [p,F(u,—u)
Aty

+¢,]}dA=0.
Since this relation holds for any area A,(t), the integrand must
vanish identically to yield
0 Lo Fiu—w)+ ¢ J+my [poFaluy ~u)+6,] =0 (A3)

which is the general balance equation at the interface.
From equation (A3) the balances concerning mass,
momentum and energy can be obtained with proper

(2}
Two phase
N
f, La Ny
e
| -1,
T U

V——=0

A=A +A;
V=V +V,

FiG. 6. Control volume on interface.
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identification of the quantity F and the efflux ¢. The mass
balance is obtained with F = 1 and ¢ = 0, viz.

pi{uy—u) m; +py(u, —u) n, = 0. (A4)

To obtain the energy balance we set

uZ

F=e+—,
>

p=q-nu

where q is the net flux which consists of conductive and
radiative fluxes, e is the specific internal energy, and = is the
pressure tensor. With these identification for F and ¢ the
energy balance becomes

S. H. CHAN, D. H. CHo and G. KOCAMUSTAFAOGULLARI

On the other hand, region 2 contains a two-phase mixture.
Thus,
P2y —w) ny = (1 - sy )pi(u—w) m,

+alsy pdug —whng  (A9)

and

pahs(u; —w) my = (1 _als,*)l)fkhf*(“l‘“i)' m

T ais; pohlma —w) g, (ALD)
The above four equations are substituted into equations {A4)
and (A6), and the resulting equations can be combined by
eliminating the term pX(u,, —u)-n; between them. After

I considerable manipulations, we obtain the interfacial

1 113 —

n '(ﬂl (hx + T)(“l —uw)+ P —1, Uy +(I14, condition at x = §,,
L \ «/ d

Qi 0 +gymy = (1 —ale ) oA —ug) e n, (ALl

2
Uz
+n,- h+4)“““a+Pu; ut ]20 AS
2 [Pz( 2 2 (uy—u)+ Pyu;—7; 7w, ‘lz# (A5) Noting that

where the relationships # = —pd-+1 and h = e+ p/p have u;-n, =dS,/di,
been used. Usually, in comparison with the thermal energy /AT .
exchange, the mechanical energy exchange and the work done qiong =[ K _‘_’7‘\" g 2
by viscous stresses can be neglected to yield v “ax Jls s,
Py —u) m +psho(uy —w) ny +q N +q, 0, and
=0. [A6)

.
Since region 1 contains only the pure solid, we have qQ;°n, = *(Kc ;F‘> +q

ox Jlsy st

iy —u) g = pHog —u)-ng, (A7) . . . . .
equation (A1l) can be written finally as equation (16) in the
prhy(uy—w) n; = p¥hfu, —u)'n,. (A3B) main text.

FUSION ET SOLIFICATION AVEC TRANSFERT RADIATIF INTERNE--UN MODELE DE
CHANGEMENT DE PHASE

Résumé—On propose un modele général de fusion et de solification qui tient compte d’'un phénoméne
intéressant qui est l'existence d’une zone diphasique dans laquelle un changement partiel de phase peut
s'opérer. La zone diphasique est attribuée a la fusion ou 4 la solification interne (en opposition avec fusion ou
solidification superficielle) induite par un rayonnement thermique. Le modéle propose trois couches
physiques : les couches liquide et solide comme dans le modéle classique et entre elles une couche diphasique
(partiellement liquide et solide). On montre que dans le cas limite d'un milieu opaque, I'épaisseur de la couche
diphasique diminue et le modéle proposé se réduit au cas classique. Une formulation mathématique est
présentée pour les problémes de changetnent de phase avec transfert radiatif interne; elle clarifie quelques
points inconsistants de la littérature. Une solution exacte et deux autres approchées pour trois problémes
simples de solidification sont présentées pour illustrer I'effet de 1a zone diphasique sur la solidification des
matériaux semi-transparents.

SCHMELZ- UND ERSTARRUNGSVORGANGE MIT INNEREM WARMETR/.\NSPORT
DURCH STRAHLUNG-—EIN ALLGEMEINES MODELL FUR DEN PHASENUBERGANG

Zusammenfassung—Es wird ein allgemeineres Modell fiir den Schmelz- und Erstarrungsvorgang
vorgeschlagen, bei dem ein interessantes Phanomen, nimlich die Existenz eines Zweiphasengebiets, in
welchem teilweiser Phasenwechsel auftreten kann, berticksichtigt wird.

Das Zweiphasengebiet entsteht durch inneres Schmelzen oder Erstarren (im Gegensatz zum Schmelzen und
Erstarren an der Grenzfliche) und wird durch innere Wirmestrahlung herbeigefiihrt. Das vorgeschlagene
Modell geht von drei physikalisch unterschiedlichen Schichten aus: der fliissigen und festen Schicht wie im
klassischen Modell und einer Schicht aus einer Zweiphasenmischung (teils filissig, teils fest), die sich zwischen
den beiden anderen befindet. Es wird gezeigt, daB im Grenzfall lichtundurchlissiger Medien die
Zweiphasenschicht verschwindet und sich das vorgeschlagene Modell auf den klassischen Fall reduziert. Eine
entsprechende mathematische Formulierung wird fiir Phaseniibergangsprobleme mit innerer
Wirmestrahlung vorgeschlagen und dazu verwendet, einige Widerspriiche in der vorhandenen Literatur
aufzukliren. SchlieBlich werden eine exakte und zwei niiherungsweise Losungen fiir drei einfache
Erstarrungsprobleme angegeben, um den Einflub des Zweiphasengebiets auf die Erstarrung von

halbtransparenten Materialien zu veranschaulichen.



Melting and solidification with internal radiative transfer

MJABJEHUE U 3ATBEPJEBAHHE IPU JIVUUCTOM ITEPEHOCE TEIIJIA B OFBEME
BEIIECTBA. OBOBIIEHHASI MOJEJIb ®A30BbIX MPEBPAIIEHHUNA

Annoraums — IpenoxeHa Gonee oblas MOneNb MIABNCHUSA U 3aTBEPICBAHHA [JIR YYETA HHTEPECHOTO
SBJIEHHA — CYLIECTBOBAHHA ABYX(}ha3HOH 30HLI, B KOTOPOH MOTYT NPOHCXOAHTL 4ACTH4HbIE (da3oBble
npespaiienus. Takas 30Ha NOAB/IAETCA B Pe3y/bTaTe IIJIABJICHHS HJIH 3aTBEPJACBAHHA BHYTPH oObema
BeLeCTBa (B OTJIMYME OT NMOBEPXHOCTHOTO IIABJICHUS WM 3aTBEPIACBAaHHsA), BbI3BAHHOTO BHYTPEHHHM
TEIUIOBLIM H3/1y4eHHeM. Mozesip BKJIIOYaeT TPH CJIOS . KUIKHIA U TBEPIBIA CJIOH, KaK H B KJIACCHYECKOH
Mozend, W AByx¢asHblifi CMelaHHbIH CJIOH (YaCTHYHO XHMAKOCTh M 4YacCTHYHO TBepaaf ¢asa),
pacnojioxeHHbId Mex Oy HUMH. [Toxa3aHo, 4TO B NpEAEILHOM Cllyuyae HEMPO3pavyHOH cpeAbl TOJIMHA
IByx($a3HOro cnos yMeHbLIAeTCS W NIPeAcTaBICHHas MOJENb CBOAMTCA K Kiaccuyeckoil. [pemroxena
COOTBETCTBYIOLAasA GOpMYya 1A ONMKCAHUA TermoobMeHa ¢ ($a30BLIMH H3IMEHEHHAMH MPH JYYHCTOM
nepeHoce Temia BHYTPH o0beMa BellecTBa, KOTOpas HCNOMb3YETCA [UIS BbICHEHHSA HEKOTOPBIX
NPOTHBOPEYHH, OTMeYaeMBbIX B onybaukoBaHHbIX paGorax. Y HakoHel, [penCTaBieHbl OQHO TOYHOE
H 1IBa mpHOMIKEHHBIX PEUICHHS TpeX HPOCTHIX 32]a4 34TBEPIACBAHMA, KOTOPHIE HILIIOCTPUPYIOT
BJIMsHHE ABYX(a3HOH 30HBI Ha 3aTBepAEBaHHE NOJIYIIPO3PaYHbIX MaTEPHAJIOB.
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